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Abstract 
In recent years, several countries have deregulated passenger railway markets to allow 

open access. The aim is for competition to lower fares and increase quality of service, 
thereby increasing demand, economic efficiency and overall social welfare. In this paper, 
we use a stylised simulation model to study how open access competition affects fares, 

demand, supply, consumer surplus and operator profits compared to a profit-maximising 
monopoly and to a welfare-maximising benchmark situation. We conclude that aggregate 

social welfare increases substantially when going from profit-maximising monopoly to 
duopoly competition, as consumers make large gains while operators’ profits fall. According 

to simulations, there generally exists a stable competitive Nash equilibrium with two or 
more profitable operators. Although operators are identical in the model setup, the Nash 

equilibrium outcome is asymmetric: one operator has more departures and higher average 
fares than the other. If operators are allowed to collude, however, for example by trading or 

selling departure slots, the equilibrium situation tends to revert to monopoly: it will be 
profitable for one operator to buy the other’s departure slots to gain monopoly power. The 
regulatory framework must therefore prevent collusion and facilitate market entry. Even 
the potential for competitive entry tends to increase social welfare, as the monopolist has 

incentives to increase supply as an entry deterrence strategy. 
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1. Introduction 

Open access competition has been introduced in several European passenger railway markets in recent years. 

The idea is that several operators compete for passengers on one line, with the aim to increase welfare through 

efficiency gains, price pressure and improved services, leading to increased demand. Considering the trend 

towards open access competition, there is a clear need to assess the magnitude of these improvements, and to 

offer policy advice regarding how to maximise welfare under the regime. To do so, the most prominent features 

of open access railway markets must be taken into account. Among these are, first, that a regulator (the 

infrastructure manager) must decide a timetable based on several competing operators’ potentially conflicting 

capacity requests; and second, that there is a natural product differentiation in that each train service has its own, 

specific departure time, so it is usually impossible for two competing operators to supply the exact same service. 

As we shall see, these features have important implications for the market outcomes. 

We use a stylised simulation model to explore the dynamics created by the market’s most prominent features. 

Using simulation allows us to study a richer model than can be analysed with purely analytic methods, while the 

simplicity of the model supports comprehension of the causes for the (sometimes surprising) results of the 

simulation. The results are tested to hold for a range of parameter values (see Appendix C. ). The welfare gains 

of replacing a profit-maximising monopoly with oligopolistic competition is assessed and compared to a 

welfare-maximising benchmark. In the model, two (or more) competing operators announce their desired 

departure frequencies, and the regulator (the infrastructure manager) then arranges the departures (we show that 

arranging them in alternating order maximises welfare). Conditional on this departure pattern, operators set 

specific fares for each departure to maximise their total profits (mutually taking each other’s fares into account). 

Frequencies are determined to reach a Nash equilibrium (we also study the Stackelberg equilibrium). The model 

hence reflects several specific features for the railway market: the infrastructure manager has a certain power to 

regulate the eventual timetable; competition occurs not only between operators but between departures that are 

close in time; and specific fares can be set for each individual departure by the operator.  

Results indicate that duopoly competition substantially increases aggregate social welfare, compared to a 

profit-maximising monopoly. The consumer surplus increases while profits decrease, due to lower average fares 

and higher service frequency, and the net social effect of this is positive and substantial. However, if profits in 

the competitive situation are transferred abroad, for example if a national monopoly operator is replaced by 

foreign-owned operators, replacing the monopoly with competition in fact tends to reduce overall domestic 

welfare. Assuming free entry, a stable Nash equilibrium is reached with two (or more) operators making positive 

profits. Despite operators being identical in the model, the equilibrium tends to consist of one dominating 

operator supplying more departures and higher average fares, and one small operator with fewer departures and 

lower average fares. The combined profit of the competing operators is substantially lower than the monopoly 

profit, meaning that there is an incentive to merge operations into a single unit, or for one operator to buy the 

other’s departure slots. Constructing a regulatory framework that prevents the market reverting into a monopoly 

is not trivial. 

A preliminary version of some of the results in this paper were presented in (Broman & Eliasson, 2017). The 

present paper contains a refinement of that model, including an updated expression for consumer surplus and a 

more realistic cost-structure for operators; the latter affects the dynamics of the model. A new benchmark-

scenario is included: a monopolist that operates under an entry-deterrence strategy. We also analyse how the 

infrastructure manager should construct a timetable out of operators’ requests, in order to maximise welfare. 

Additional policy implications are drawn from the refined model and new benchmark case. 

2. Background 

Over the last few decades, many railway markets have become increasingly deregulated, especially in Europe. 

Most European countries nowadays have separated service provision from infrastructure management, meaning 

that one or several operators run the trains, determine fares and (to a large extent) determine service frequencies, 

while an infrastructure manager (usually a government agency) is responsible for track maintenance and 

investments, and also for solving possible conflicts between competing operators’ service requests. Some 

operators are companies or agencies controlled by the government, while some operators are privately owned 

companies. Sweden was among the first companies to deregulate its railway system, separating service 

operations from infrastructure management in 1989. The UK has also come far in this respect, with public 

tenders for all lines. In one way or another, the deregulation trend has spread throughout Europe and beyond. 

A few countries are now taking this one step further, through introducing competition not just for the tracks 

but on the tracks – so-called open access competition. Since 2001, the Swedish freight market is completely 



 

 

deregulated, and since 2010, also the passenger market; open access competition is the market regime for all 

profitable parts of the network (services on unprofitable lines are procured through public tendering) 

(Alexandersson & Hultén, 2009). Other countries that are experimenting with open access competition include 

Austria, the Czech Republic, Italy and the UK (Beria, Redondi, & Malighetti, 2014). The result has in most cases 

been a duopoly situation, sometimes complemented by smaller niche actors. Our analysis in this paper focuses 

on passenger markets.  

More is known about the effects of open access on other modes than rail. When the British bus market was 

deregulated in the 1980s, new entrants challenged the incumbent only on a small share of submarkets. Where 

they did, this led to a short period of fierce competition in price as well as frequency. Profitability for both 

competitors rapidly sank well into the negative and within a year or so one of them closed shop. At that point 

fares increased again and departure frequencies decreased, although prices remained lower and frequencies 

higher compared to before deregulation – possibly as a deterrence strategy against competition. (Evans, 1990). 

Simulations of the bus market reach similar conclusions (see e.g. (Evans, 1987)). 

Railway markets differ from bus markets in some important respects, however, which affects outcomes. 

Whereas prices are set freely, railway timetables are partly determined by the infrastructure manager, which is 

usually a government agency. Moreover, timetables can usually only be changed at certain points in time, 

common for all operators. Therefore, the market dynamics can be described by a three-step process: First, 

operators apply for capacity; then, departure slots are allocated; finally, prices are set in competition, with 

timetables fixed for a certain time period. 

Another difference is that individual departures have different prices, which is unusual in bus markets. In fact, 

individual railway tickets are often sold at different prices, due to the prevalence of yield management price-

setting software. Also partly because of such software, prices can be adapted quickly when needed, possibly 

removing the reason for a monopolist to lower prices as an entry deterrence strategy. In contrast, deterrence 

strategies in frequency seem more plausible, as building the necessary capacity is a slower process. 

3. The model 

The simulation model used in this paper is constructed to capture some essential features of open access 

competition in passenger railway markets. We consider only one origin-destination pair, and all train services 

have the same running time; they only differ in terms of departure time and fare. Passengers choose which train 

service to travel with (if any) by minimising their generalised travel cost, which is the sum of the fare and the 

schedule delay (the difference between their preferred departure time and the respective service’s departure 

time). Demand is a function of generalised cost.  

Operators have identical production cost functions, and strive to maximise profits by choosing departure 

frequencies and fares. These are determined in a two-stage process: First, operators announce their desired 

frequencies. The regulator (the infrastructure manager) determines the timetable based on these frequencies, 

ordering operators’ departures to maximise social welfare. Second, operators decide the fares of each departure 

to maximise their respective total profit under the given timetable, taking the fares of competing operators into 

account. Fares are hence determined by a Nash equilibrium. Operators are assumed to understand what the 

outcome of the second step will be from the beginning, and choose frequencies in the first step accordingly. 

Nash equilibrium is therefore reached in both the first step (frequencies) and the second step (fares). 

Through this design, the model captures some key characteristics that distinguish railway markets from that of 

e.g. buses. The infrastructure manager is by necessity involved in timetabling, and strives to maximise welfare 

(which is not necessarily aligned with operators’ interests). Fares and timetables are determined in a two-step 

process. The timetable is based on operators’ requests, but the details are determined by the infrastructure 

manager, and lasts for a certain period of time (such as a year). Fares are set conditional on the timetable, can be 

changed relatively easy, and are set freely by operators.  

3.1. Calculating demand 

Every potential passenger has a unique preferred departure time
1
 (PDT) 𝑡; in all other respects passengers are 

identical. The PDTs have a distribution 𝜑(𝑡) over the day such that ∫ 𝜑(𝑡)𝑑𝑡 equals the daily potential demand. 

There are 𝑁 trains departing at times 𝑇1, 𝑇2, … , 𝑇𝑁 with different fares 𝑝1, 𝑝2, … , 𝑝𝑁. Trains are assumed to have 

unlimited capacity, and the marginal passenger cost for operators is zero. Passengers choose the departure that 

minimises their generalised travel cost, which is the sum of the fare and the monetary value of their schedule 

                                                           
1 This may be substituted with preferred arrival time with analogous results. 



 

 

delay, i.e. the difference between the departure time 𝑇𝑛 and the PDT t. We assume that the monetary valuation of 

the schedule delay is constant and symmetric, so the minimal generalised travel cost for a passenger with PDT t 

is 

 

𝑐(𝑡) = min
𝑛

(𝑝𝑛 + 𝛼|𝑇𝑛 − 𝑡|) (1) 

 

Demand depends linearly on travellers’ generalised cost. The number of passengers with PDT t that choose to 

travel is 

 

𝐷(𝑡) = max{𝜑(𝑡) − 𝛽𝑐(𝑡), 0}, (2) 

 

where β > 0. 

To calculate the number of passengers choosing to travel with departure 𝑛, let 𝜏𝑛 be the PDT of a passenger 

who is indifferent between departures 𝑇𝑛 and 𝑇𝑛+1. This means that passengers with PDTs in the interval 

[𝜏𝑛−1, 𝜏𝑛] will travel with train service 𝑛. Let 𝜏0 be the start of the day and 𝜏𝑁 the end of the day. 

Straightforward calculations give  

 

𝜏𝑛 =
𝑝𝑛+1 − 𝑝𝑛

2𝛼
+

𝑇𝑛+1 + 𝑇𝑛

2
, 𝑛 = 1, … , 𝑁 − 1 

 
(3) 

 

The number of passengers who travel with train service n is then 

 

𝐷𝑛 = ∫ 𝐷(𝑠)𝑑𝑠

𝜏𝑛

𝜏𝑛−1

 (4) 

3.2. Consumer and producer surplus 

Using equation (2), the consumer surplus conditional on PDT t becomes (the derivations can be found in 

Appendix A. ) 

 

𝐶𝑆(𝑡) =
1

2𝛽
𝐷(𝑡)2 =

(𝜑 − 𝛽𝑝𝑛)2

2𝛽
+

𝛼2𝛽

2
(𝑇𝑛 − 𝑡)2 + 𝛼(𝛽𝑝𝑛 − 𝜑)|𝑇𝑛 − 𝑡| 

(5) 

 

Assuming that 𝜑(𝑡) is constant throughout the day (which we will do in the simulations) the consumer surplus 

becomes 

 

𝐶𝑆 = ∑ ∫ 𝐶𝑆(𝑡)𝑑𝑡
𝜏𝑛

𝜏𝑛−1𝑛

= 

= ∑
(𝜑 − 𝛽𝑝𝑛)2

2𝛽
(𝜏𝑛+1 − 𝜏𝑛) +

𝛼2𝛽

6
((𝑇𝑛 − 𝜏𝑛)3 + (𝜏𝑛+1 − 𝑇𝑛)3)

𝑛

+
𝛼(𝛽𝑝𝑛 − 𝜑)

2
((𝑇𝑛 − 𝜏𝑛)2 + (𝜏𝑛+1 − 𝑇𝑛)2)  

(6) 

 

The profit for each operator is the sum of net profits for all its departures during a day: 

 

𝛱𝑘 = ∑ (𝑝𝑛𝐷𝑛(𝑝) − 𝐾)

𝑛∈𝑆𝑘

− 𝜅 (7) 

 

where 𝑆𝑘 is the set of train services run by operator k, 𝑝𝑛 is the fare for departure n, K is the operations cost per 

departure and κ is the operator’s fixed cost. Each operator chooses its fares to maximise Π, conditional on the 

fares of the other operator, so that fares are decided by the Nash equilibrium. 

The total social welfare is the sum of the consumer surplus and the producer surplus. The model hence does 

not include any external benefits of traveling. The conventional assumption that producers’ surplus is included in 



 

 

the overall social welfare is not innocuous, since train operators may well be foreign owned and a decision 

maker in a country may well consider producer surplus accruing to foreign owners as “lost” from a domestic 

perspective (compared to, say, a government-owned operator, where profits accrue to domestic tax payers). In 

the analysis below, we will also discuss how this perspective may change some of the conclusions.   

3.3. Choosing frequencies and fares 

The game is designed to reflect an important aspect of railway markets: that frequencies are set rarely, while 

fares are set continuously. It is played as follows. 

There is a limited number of operators. First, they decide their respective frequency, i.e. how many departures 

per day they will run. An equilibrium point is reached where no operator wishes to change its chosen frequency. 

Then the infrastructure agency decides the exact timetable so that there is equal space between any two 

consecutive departures, and departures of different operators are intermingled in such a way that passengers have 

as many options as possible throughout the day. (We will demonstrate that this is the welfare-maximising way to 

arrange the departures, given a uniform PDT distribution.) 

Secondly, operators set fares for each departure. The sub-game ends in Nash equilibrium, where no operator 

wishes to change the fare on any of its departures given the timetable and the fares of its competitor(s). The 

entire process is reiterated until both the frequency and the price game are in equilibrium. 

Note that fares affect demand in two ways: decreasing a fare on a specific departure will both increase the 

total number of passengers and attract passengers from adjacent departures. We assume that operators take into 

consideration the ownership of adjacent departures when setting fares. This means that the general price level 

depends not only on the frequency of departures but also on the how departures are ordered. 

3.4. Parameters 

The purpose of a stylised simulation as the one used here is obviously not to predict quantitative outcomes but 

to gain insights. Still, the model parameters are calibrated to give outcomes resembling a real case, which means 

that we have sufficient confidence in the relative magnitudes of the results. Moreover, the conclusions reported 

in the paper have been tested for robustness through parameter sensitivity analysis. Appendix C presents some 

key results from the main sensitivity analyses. 

The model parameters have been calibrated so the outcome resembles the Stockholm-Gothenburg railway 

line: ca 5,000 daily trips, between 10 and 30 departures per direction, and fares mainly in the interval of 200-

1,000 SEK. In the base case, the parameters are scheduling cost α = 500 SEK/hour
2
, demand/price parameter 

β = −10, potential demand ∫ 𝜑(𝑡) dt = 15,000 passengers/day, fixed cost per departure K = 40,000 SEK
3
 and 

fixed daily cost per operator 𝜅 = 500,000 SEK. For simplicity, the PDT distribution 𝜑(𝑡) is taken to be a 

uniform distribution; this is simply to make model outcomes easier to interpret As will be shown below, this 

means that the regulator (which strives to maximise social welfare) will place the train departures at regular 

distances in time.  

4. Analysis 

This section presents simulation results. Section 4.1 presents results for monopoly situations, which serve as 

benchmarks to be compared with situations with competing operators. Section 4.2 presents results for two 

competing operators in Nash equilibrium. Section 4.3 shows that the infrastructure regulator, which decides the 

order and headway of departures given operators’ choice of frequencies, should mix departures of competing 

operators as much as possible, and spread departures evenly to maximise welfare. Throughout the analyses of 

competitive situations, we will assume that this is what the regulator does. Section 4.4 analyses situations with 

more than two operators: first, a situation with many potential operators and free entry, and second, a situation 

with two operators using an entry deterrence strategy to keep a potential third operator from wanting to enter the 

market.  

                                                           
2 The scheduling cost α is based on the value of headway in (ASEK6), assuming a 25% ratio of business trips. 
3 The cost per departure is calculated as K = γ1 ∗ travel time + γ2 ∗ travel distance where the parameters γ1  and γ2 are taken 
from (ASEK6) 



 

 

4.1. Monopoly 

Consider three monopoly situations: welfare maximisation with a cost recovery constraint (i.e. no operator 

subsidy), profit maximisation, and entry deterrence. The first, welfare maximisation under cost recovery, will 

serve as a benchmark for subsequent comparisons
4
; it can be interpreted as a publicly controlled company with 

perfect information, only serving the interests of society (disregarding any potential problems with public 

monopolies, e.g. of internal efficiency). The second, profit maximisation, is simply a standard monopoly 

situation: the monopolist chooses fares and service frequency to maximise its total profit. The third situation, 

entry deterrence, builds on the assumption that fares can be adapted quickly while frequencies cannot: an 

incumbent monopolist chooses a frequency high enough to deter a potential competitor from entering the market, 

and given this frequency, the monopolist is then free to choose profit-maximising fares. Both the incumbent and 

a potential competitor anticipate that if there are two competing operators, fares will instead be Nash equilibrium 

prices. It is often impossible for the incumbent to prevent competitive entry with certainty; instead, it can take 

measures to make it less profitable and more expensive. Such a strategy has no ‘optimum’ in the normal sense, 

why we have instead included one possible strategy that makes competitive entry less desirable. Table 1 shows 

results from the simulation of the first two situations, welfare maximisation and profit maximisation, and a 

possible entry deterrence strategy. 

Welfare maximisation (without subsidies) leads to 22 departures per day, and an average fare of SEK104, 

which is just enough to make total profit non-negative. Compared to the profit-maximising monopoly, there are 

six more departures, and the average fare is 85% lower. Demand is almost doubled and consumer surplus is 

almost four times larger. Total social welfare is just over 40% higher, since the gain in consumer surplus is partly 

offset by a decrease in producer surplus. Obviously, these particular figures will depend on the specific 

parameters of the model, in particular the assumed demand elasticity and the operator’s cost structure. But since 

the model parameters have been chosen from realistic situations, the figure is likely to be in a realistic order of 

magnitude. (Parameter sensitivity analyses are presented in Appendix C.) 

Table 1. Monopoly situations. 

 Welfare max., no 

subsidy 
Profit max. 

Entry deterrence 

(example) 

No. of departures (per day) 22 16 25 

Average fare (SEK) 104 705 720 

No. of passengers 13,300 7,100 7,200 

Consumer surplus (SEK) 8,840,000 2,430,000 2,570,000 

Producer surplus (SEK) 0 3,800,000 3,680,000 

Total welfare (SEK) 8,840,000 6,230,000 6,260,000 

 

In the entry deterrence scenario, the incumbent increases the service frequency to avert competitors from 

entering the market by making it difficult or unprofitable. If the number of incumbent departures increases, an 

entrant would also need a larger number of departures to gain the market share needed to pay for fixed costs. As 

a larger number of departures requires a larger investment in rolling stock, this makes market entry riskier. If the 

incumbent runs 16 departures, which is the profit-maximising frequency, a prospective entrant would need to run 

at least 3 departures to be profitable. If the incumbent increases its frequency to 25 departures, a prospective 

entrant would need to run at least four departures to be profitable, and its highest attainable profit would be 

reduced by 58% compared to the scenario where the incumbent runs 16 departures. The incumbent, on the other 

hand, does not lose much by increasing its frequency from 16 to 25 departures: its total profits only decrease by 

3%.  This is hence a cheap and reasonably effective deterrence strategy for the incumbent. Social welfare 

increases somewhat by this increase in frequency, but only slightly (less than 0.5%), since the incumbent can 

still charge monopoly fares as long as it is the only operator.  As a corollary, we can note that if a regulator wants 

to reduce the negative effects of a monopoly, it is not a very effective strategy to force the monopolist to increase 

its frequency, as long as the operator is free so set monopoly fares.  

                                                           
4
 Strict welfare maximisation would lead to negative profits, since the optimal fare is equal to the marginal passenger cost, and 

hence revenues will not cover fixed operations costs. While subsidised train services are common for intra-regional public 

transport (commuter trains), it is much less common for long-distance train markets, which is the focus of this paper, so we will 

not consider this situation. 



 

 

4.2. Frequency equilibrium under duopoly 

In the duopoly situation, we assume that the two operators announce how many departures they want to run, 

and the infrastructure regulator then translates this into a timetable, i.e. it decides the headway and ordering of 

departures. The infrastructure regulator strives to maximise overall social welfare when doing this. In section 

4.3, we will show this means that the regulator will mix departures run by different operators as much as 

possible, and spread departures evenly across the day (since we have assumed a uniform PDT distribution).  

Given this timetable, operators choose profit-maximising fares until they reach a Nash equilibrium. The 

operators know the outcome of this subgame when they decide their number of departures, and their choices on 

number of departures also lead to a Nash equilibrium. 

The frequency Nash equilibrium is not unique, however, as there are two symmetric equilibria: if operator 1 

running X trains and operator 2 running Y trains is a Nash equilibrium, then operator 1 running Y trains and 

operator 2 running X trains is also a Nash equilibrium, since operators are indistinguishable in our model setup. 

(As we shall see, X is generally not equal to Y in Nash equilibrium.)
5
 Results from the simulation model are 

shown in Table 2, compared with the two benchmark monopoly situations from section 4.1.   

Figure 1 shows fares, demand and profits in Nash equilibrium. One operator has 18 departures and the other 

has 7. Note that the total number of departures is higher in the duopoly case than in welfare-maximising 

monopoly (25 departures rather than 22) in the base case. The intuition for this is that although a higher 

frequency generates value for travellers through reduced scheduling costs, it also requires fares to rise in order to 

pay for the extra trains, and the fare increase is larger than the scheduling cost reduction. The welfare maximum 

thus has fewer departures. 

On most departures, the entrant offers lower fares and consequently attracts more passengers per departure; it 

makes a higher profit per departure than the incumbent. The departures controlled by the incumbent have higher 

fares and lower profits on average. In particular, the incumbent’s departures which have other incumbent 

departures on either side have the highest fares, lowest demand and yield lowest profit. In fact, the profit of these 

departures would increase if fares were lowered – but most of the attracted demand would come from other 

departures controlled by the incumbent, so the incumbent’s total profit would decrease. This shows how the 

overall outcome is affected by a market setup where operators are able to control the fare of each individual 

departure, and maximises the aggregate profit from all their departures, rather than the profit of each departure 

seen in isolation. This is also why it matters greatly how the departures of different operators are ordered, as we 

shall see in section 4.3. 

The operators’ ability to control fares individually for each departure, and to take into account whether a 

departure competes with other departures controlled by the same operator or those of a competitor, is also the 

reason why the Nash equilibrium is asymmetric in frequencies, with one “large” operator running many 

departures and one “small” operator running fewer. Remember that the operators in the model setup are 

identical, and that there are no economies of scale in production costs in the model (apart from a fixed cost to 

enter the market at all). Given this, one might expect that the operators should offer the same frequency in 

equilibrium, but this is not what happens. Instead, one operator tends to have a larger number of departures than 

the other. The frequency equilibrium is thus asymmetric, i.e. the operators’ frequencies are different from one 

another in equilibrium. 

                                                           
5 For some parameter-values (though not in the base case), there are multiple Nash equilibria in addition to the symmetric 
points. In such cases, the equilibrium point with fewest departures is analysed. 



 

 

The asymmetric frequency equilibrium is a consequence of operators having an incentive to lower their 

exposure to price competition. When operators have the same number of departures, all departures will be 

adjacent to departures controlled by a competitor. In contrast, if an operator has more departures than the other, 

a quasi-monopoly situation arises for some of its departures. When three consecutive departures are controlled 

by the same operator, the one in the middle is shielded from price competition (see Figure 1). In effect, every 

additional departure that the dominating operator adds will have this feature, creating an incentive for a dominant 

operator to increase its frequency further. 

An entrant operator, by contrast, lacks such incentives. An operator with few departures will face a situation 

where any additional departure will face full price competition, and hence work to lower the general price level 

on the market. The ‘marginal departure’ is hence less profitable for the smaller operator, giving incentives for it 

to keep the number of departures low. 

Of course, it is only profitable for the dominant firm to add more departures up to a point. With more 

departures, the average profit per departure tends to fall, because of declining average demand per departure. 

Even when an extra departure is profitable on its own, it induces losses on existing departures by attracting 

demand from them. This induced loss of new departures affects the larger operator the most. At some point, the 

induced loss will be greater than the profit of the extra departure, even if that departure is shielded from price 

competition. For this reason, one operator does not necessarily end up running all departures.  

The phenomenon described here appears even though, as mentioned above, the operating cost per departure is 

assumed to be constant. In reality, there are economies of scale in the number of services, which will benefit a 

larger operator (Wheat & Smith, 2015) which enhances the frequency asymmetry further. Similarly, a long-

standing good reputation among customers by the incumbent operator might lead to it charging higher fares and 

thus becoming more profitable than its competitor, as suggested by Fröidh & Byström (2013) and Ruiz-Rúa & 

Palacín (2013), also enhancing the frequency asymmetry. The appearance of asymmetry of frequencies despite 

symmetric preconditions is analogous to the results of a simulation of the airline market made by Schipper, 

Nijkamp & Rietveld (2007). 

Table 2 shows the profits, given Nash prices, for both the incumbent and the entrant for various combinations 

of frequencies, with profit-maximising monopoly (16:0) and Nash equilibrium duopoly (18:7) marked. The Nash 

equilibrium is the incumbent’s best option on that row and the entrant’s best option in that column; hence neither 

of them can increase their profit by unilaterally changing their frequency. 

The two competing operators run 25 trains per day between them, compared to 22 in the welfare-maximising 

benchmark (see Table 3), while average fares are roughly three times higher and consumer surplus 30% lower. 

Aggregate welfare is 13% lower in duopoly compared to welfare-maximum. This compares favourably to the 

welfare difference of 30% between profit-maximising monopoly and welfare maximum. This welfare gain, 

equivalent to 17% of the theoretical unsubsidised welfare-maximum, constitutes the main argument for 

demand 

100 

200 

300 

400 

500 

600 

700 

fares 

100 

200 

300 

400 

Figure 1. Fares (bars, left-hand scale) and demand (line, right-hand scale) in Nash equilibrium. Incumbent fares are dark grey; entrant fares light grey. 
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introducing open access competition on passenger railway lines. Compared to the profit-maximising monopoly, 

the welfare gain is 24% when open access competition is introduced, if it results in duopoly Nash equilibrium.  

Table 2. Net profits (in kSEK per day) of incumbent and entrant for different combinations of departure frequencies. The point 16:0 is the 

profit-maximising frequency without the entrant; the point 18:7 is the Nash equilibrium in duopoly. 

    Incumbents’ number of departures   

Entrant 

no. of 

dep.  

  14 15 16 17 18 19 20 

0 
Incumbent 3,790 3,800 3,804 3,803 3,797 3,788 3,777 

Entrant 0 0 0 0 0 0 0 

1 
Incumbent 3,327 3,343 3,352 3,357 3,367 3,353 3,346 

Entrant -216 -233 -249 -264 -276 -289 -300 

2 
Incumbent 2,882 2,902 2,914 2,925 2,930 2,930 2,922 

Entrant 33 1 -26 -54 -78 -100 -119 

3 
Incumbent 2,456 2,411 2,430 2,491 2,500 2,503 2,503 

Entrant 241 259 237 131 96 67 41 

4 
Incumbent 2,057 2,053 2,068 2,083 2,122 2,130 2,108 

Entrant 395 350 313 271 235 198 194 

 
5 

Incumbent 1,717 1,697 1,701 1,716 1,762 1,766 1,766 

 Entrant 462 420 391 351 321 289 262 

 
6 

Incumbent 1,399 1,378 1,405 1,410 1,449 1,442 1,404 

 Entrant 504 449 396 367 353 330 287 

 
7 

Incumbent 1,118 1,101 1,158 1,167 1,170 1,169 1,162 

 Entrant 509 443 421 385 355 328 304 

 8 Incumbent 924 919 908 922 930 932 931 

  Entrant 493 430 404 366 332 302 276 

 

So far in our analyses, we have made the conventional assumption that operator profits are somehow returned 

to the society at large, for example through corporate taxes and shareholder dividends. We will now look at 

where the profits are going. Under a regulated monopoly, the sole operator is often a government-owned 

company and its profits hence accrue to the state and ultimately to taxpayers. Under a competitive regime, 

however, operators may be private and foreign owned. From the point of view of the citizens in a country, profits 

may hence be “lost” when they accrue to foreign companies rather than the government or domestically owned 

companies. It is therefore interesting to see how total welfare (consumer surplus and profits) under monopoly 

compares with consumer surplus (i.e. excluding profits) in duopoly. In our simulation, consumer surplus in the 

duopoly Nash equilibrium is almost exactly the same (0.7% lower) as the total welfare in profit-maximising 

monopoly. This implies that if profits are transferred abroad following deregulation, the domestic welfare gain 

vanishes. 

Table 3. Duopoly under Nash equilibrium, compared to two monopoly situations and a benchmark with low barriers to entry (“Multiple 

operators”). 

 Welfare max., 

no subsidy 
Profit max. 

Duopoly,  

Nash eq. 

Multiple 

operators 

No. of departures 22 16 18 + 7 6 

Average fare 104 703 317 483 

No. of passengers 13,300 7,100 11,100 7,800 

Consumer surplus 8,840,000 2,430,000 6,190,000 2,720,000 

Producer surplus 0 3,800,000 1,520,000 580,000 

Total welfare 8,840,000 6,230,000 7,720,000 3,220,000 

 

Profits make up a large share of total welfare under profit-maximising monopoly. If revenues are used to 

replace distortionary taxes, profits should arguably be marked up by the marginal cost of public funds (MCPF) in 

order to reflect their overall welfare effect. Calculated this way, with MCPF=1.3, consumer surplus in duopoly is 

16% lower than total welfare under monopoly.  

If capacity is expensive and inflexible, it is possible that one operator will choose a different frequency from 

what is implied by the Nash equilibrium in order to force its competitor into a position more favourable to itself, 

under the logic of a Stackelberg game. For some parameter values, though not the base case, there is a 



 

 

Stackelberg equilibrium
6
 that is different from the Nash equilibrium. Noteworthy is that the Stackelberg 

equilibrium has fewer (or equally many) departures compared to the Nash equilibrium, and both profits and fares 

are higher (or equal). This is not typical; Stackelberg games often result in more competitive outcomes than do 

Nash games (see e.g. Maskin and Tirole (1987)). The special characteristics of the Stackelberg equilibrium in 

this paper is an effect of the asymmetry of frequencies described above: When the incumbent offers fewer 

departures, the two operators move toward symmetry in frequency space, thus (temporarily) increasing 

competition and reducing profits. The entrant’s best response is to move away from the diagonal, i.e. to decrease 

its own frequency as well. Total welfare is usually lower in the Stackelberg equilibrium than in the Nash 

equilibrium, unless the two are equal. 

4.3. Ordering and timing of departures  

As mentioned above, we assume that operators only decide frequencies, while the infrastructure manager 

decides precise departure times, i.e. the ordering and timing of departures, and we assume that the infrastructure 

manager strives to maximise aggregate social welfare. This is obviously a simplification of reality, but it reflects 

the fact that under open access competition, operators cannot freely choose departure times: they apply for 

capacity and the infrastructure manager (which is normally a government agency) determines how to construct a 

feasible timetable out of operators’ (possibly competing) requests. The timing and ordering of departures has 

substantial impact on demand, fares and overall welfare. Assuming that the objective of the regulator is to 

maximise social welfare, we will demonstrate that the regulator should spread departures evenly (assuming a 

uniform PDT distribution), and aim for maximal competition between operators by mixing departures by 

different operators. That departures are spread evenly is of course a consequence of our simplified assumption of 

a uniform PDT distribution, but the finding that departures run by competing operators should be mixed as much 

as possible is an insight with real-world implications. The intuition is that this minimises the local quasi-

monopoly power that arises whenever the same operator controls adjacent departures.  

Table 4. Welfare effect of clustering rather than intermingling departures. 

 Intermingled 

(I-E-I-I-E-I) 

Clustered 

(I-I-E-E-I-I) 

Relative  

change 

Total welfare 5,540,000 5,200,000 -6.1% 

Combined profit 2,550,000 2,670,000 +4.8% 

Consumer surplus 2,990,000 2,530,000 -15.4% 

Total demand 7,600 7,000 -8.3% 

Average fare 497 560 +12.7% 

 

Table 4 illustrates how the ordering of departures affects results by comparing two versions of point 4:2 in 

frequency space (i.e. with four incumbent and two entrant departures): one that is maximally intermingled and 

one with clusters of departures run by the same operator. The timetable with intermingled departures yields 

higher total welfare. As expected, this is driven by an intensified price competition that decreases fares, increases 

demand and improves consumer surplus while lowering profits, compared to the clustered scenario. 

Table 5. Welfare effect of unequally spread departures. 

 Consumer 

surplus 

Total 

welfare 

Welfare 

change (%) 

Baseline: even spacing 2,990,000 5,540,000 - 

Move dep. 1 2,990,000 5,570,000 +0.5% 

Move dep. 2 2,960,000 5,380,000 -2.9% 

Move dep. 3 2,990,000 5,400,000 -2.6% 

Move dep. 4 2,920,000 5,360,000 -3.2% 

Move dep. 5 2,960,000 5,380,000 -2.9% 

Move dep. 6 2,940,000 5,270,000 -4.9% 

 

The case for evenly distributed departures is illustrated in Table 5, which shows the welfare effects of 

changing departure times slightly. It also uses point 4:2 in frequency space. One departure at a time is moved 

forward in time 50% of the distance to the nearest departure. The table shows the effect on aggregate welfare of 

                                                           
6 In a Stackelberg-game the independent variables are normally quantity and price; here they are frequency and price. 



 

 

each change, compared to the base case where departures are spread evenly. The effect is small but clear: any 

deviation from the situation where departures are spread evenly reduces total welfare (except on the boundary).  

4.4. Multiple operators 

Up to now, we have only studied two potential operators. Most real open access markets for passenger traffic 

do in fact only have two or at most three competing operators, for example Italy (Beria, Redondi, & Malighetti, 

2014), the Czech Republic (Zdenek, Kvizda, Jandová, & Rederer, 2016) (Zdenek, Kvizda, Nigrin, & 

Seidenglanz, 2014) and Sweden (Vigren, 2016). Preston (2008) cites too thin demand in most markets along 

with economies of scale and density as reasons to assume that the number of actors in this type of market will be 

very limited. This is also in line with the driving force of the asymmetry of frequencies as discussed in 

section 4.2.  

We will now relax the requirement on number of operators and instead assume that nothing in particular 

restricts it, such as large barriers to entry. Instead, both entrants and incumbents will add or remove departures 

depending on how their total profitability is affected on the margin. 

As discussed in section 4.2, new departures decrease the profitability of existing departures, as there will be 

fewer passengers per departure (or lower fares to compensate). As this affects incumbents but not new entrants, 

the marginal profit of adding an extra departure (the profit of that departure minus lost profit of existing 

departures) is lower for an incumbent than for an entrant. Assume that no operator is large enough to form 

pseudo-monopoly situations
7
 as described in section 4.2, and that instead the smallest operator always has the 

least to lose from adding new departures. In equilibrium, each operator will then run a single departure, and the 

number of departures (and operators) becomes the highest possible that permit them all to be profitable.  

Using the parameters of our base case, there will be six operators, lowering combined frequency by 73% 

compared to the welfare maximising benchmark (76% compared to the Nash equilibrium). Total welfare 

decreases by 63% (57%) by the same comparison, and profits fall by over 62% compared to the Nash 

equilibrium (see Table 3. Duopoly under Nash equilibrium, compared to two monopoly situations and a 

benchmark with low barriers to entry (“Multiple operators”).). Note however that numbers in this scenario vary 

greatly with the value of operators’ fixed cost κ. 

5. Implications for policy market regulation 

In summary, our simulation results show that going from a monopoly to open access competition tends to 

increase social welfare substantially, reducing profits and benefitting travellers. Indeed, total welfare in the 

duopoly situation is close to the ideal, hypothetical case with a welfare-maximising operator under a cost 

recovery constraint.  

A welfare-maximising infrastructure agency should arrange operators’ departures so that they are 

intermingled, in order to increase price competition. However, operators in duopoly will not offer equally many 

departures in equilibrium. This asymmetric frequency equilibrium lowers total welfare compared to symmetry, 

so it is worth asking whether there are effective market regulations to force operators to offer similar frequencies 

The analyses assume that all producers’ surplus are included in the social welfare. However, this assumption 

is not innocuous. In practice, monopolies often consist of a government-owned company, meaning that profits 

accrue to tax payers, while under duopoly, at least some operators may be foreign owned. Hence, a national 

policy maker may well consider profits accruing to foreign shareholders as “lost” from a domestic perspective. It 

should be stressed that railway markets are different from standard product markets since there is only physical 

room for a limited number of producers, and each departure time presents a certain monopoly power. This means 

that even in the long run and under the assumption that the railway market is otherwise perfect, firms will make a 

profit, which can be substantial. This is in contrast to standard product markets where long-run profits can 

reasonably be assumed to be zero when capital costs etc. are taken into account. This means that the question of 

to whom profits accrue is not moot. If operators’ profits are regarded as “lost” in the duopoly situation, this tends 

to cancel out most of the increase in social welfare in the simulations (although the precise loss depends on 

parameter values). Hence, it is worth asking whether there are policies or regulations that recoup at least some of 

operators’ profits to the government (and hence the taxpayer collective).  

Another significant problem is the fact that the combined profits of the operators are always lower than the 

profit of a monopolist. This means that operators have an incentive to restore the monopoly situation, for 

example by merging or colluding, or by one operator buying the other’s departure slots (if this is allowed). The 

increased profit will be more than enough to compensate the competing operator. Hence, if departure slots can be 

traded, or if operators can merge or buy each other, or collude in other ways (for example by agreeing to divide 
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Without this assumption, a possible outcome is the entry deterrence Nash equilibrium as described in section 4.1. 



 

 

the overall railway market between them), the competitive situation is not stable, but will revert to monopoly. 

The fundamental reason for this is that for any fixed time period, there is a finite number of departure slots, so 

the number of possible entrants is limited in any given time-period. There is hence a commercial incentive for 

one operator to buy or somehow gain control of all the slots to become a monopolist. Once an operator has 

control over all departure slots, the monopolist may choose not to use all of them.  

Constructing a procedural framework that prevents this outcome is not trivial. One countermeasure is to 

forbid operators to trade departure slots with each other. But such a ban may not be enough: negotiations and 

some amount of quid-pro-quo between operators is usually a necessary part of timetable construction in reality. 

Moreover, tacit collusion between operators to divide submarkets between them may be very difficult to prevent 

in practice. 

This observation also poses a significant problem for procedures aiming to allocate scarce capacity through 

market mechanisms, such as auctions or scarcity pricing. Since the profits of a monopolist is higher than the 

combined profits of two competing operators, a would-be monopolist will always be willing to outbid its 

competitors. Hence, it is highly likely that a capacity allocation (with a finite number of departure slots) based on 

operators’ willingness-to-pay will result in a monopoly situation – with the welfare losses highlighted above. 

We have used our model to study a number of policy proposals to counteract the problems above. However, 

several of them have in fact turned out to be either ineffective or counter-productive, and have therefore not been 

included in the above proposal. These include measures to curb excessive operator profits and to force the 

frequency equilibrium toward symmetry. 

First, consider the case to curb excessive profit. In a duopoly market, competition is less than perfect and 

operators’ profits do not decrease towards zero, as discussed above. Policy makers may therefore wish to tax 

those earnings. One option to their disposal is to raise infrastructure charges. We have looked at the effects of a 

flat fee per departure that is high enough to lower total profits by around a third. 

The problem with raising infrastructure charges to curb profit is that, to succeed, it must amount to a 

substantial increase in the cost per departure, thus altering the incentives of the frequency game. Therefore, the 

equilibrium switches to a point with fewer departures and higher fares, resulting in a welfare loss that is well 

above what the government earns from the charge increase. This inefficiency of infrastructure charges above 

marginal costs and externalities is unsurprising. In fact, it holds generally that it is optimal to operate an 

economy at the production-possibilities frontier, implying that intermediary goods – including infrastructure – 

should not be taxed. Diamond and Mirrlees (1971) show that this result generally holds even in the presence of 

distortionary taxation.  

Now consider the frequency equilibrium. While the above policy recommendations are shown to result in 

asymmetric frequency equilibrium, the welfare maximising frequency combination under price competition is 

symmetric. It would be better for society if operators could be made to offer an equal number of departures, 

unless the means to make such outcome come about is so inefficient that it cancels out the advantage. This turns 

out to be the case; a number of policies designed to produce equally many departures end up either failing 

through not providing sufficient incentives for the smaller operator to raise frequency, or damaging total welfare 

by lowering combined frequency or raising average fares. 

One possibility is for the infrastructure agency to decline requests for capacity beyond a certain point in order 

to reduce the frequency of the incumbent. However, this is in effect similar to forcing the incumbent to pursue a 

Stackelberg strategy (described in section 4.2). According to the logic of asymmetric frequency equilibria, the 

entrant then has incentives to also decrease frequency, contrary to the regulator’s intentions. Fares increase, 

ridership drops and consumer surplus decreases because of the policy. Profits may increase under such a scheme, 

but not enough to keep social welfare from falling. 

Another possibility is to have rules that force operators to have a certain minimum frequency. The dynamics 

of the price game is unaffected by this. However, the regulating agency may not know what frequency is 

optimal, as it lacks information needed to calculate the value of individual departures, such as ridership and 

fares. In addition, forcing operators to run more departures than they had planned for may result in a service of 

poor quality, or not be feasible at all because of the long lead-times and large financial obligations associated 

with acquiring rolling stock and scaling up operations.  

Yet another option is to skew incentives to make the offering of equally many departures seem more 

attractive to operators. The regulator might even abstain from trying to maximise competition, in cases where the 

competitors offer close to equal frequencies. Instead, it bundles the entrant’s departures closer together, thus 

easing the price pressure there. The priority should be to lessen the burden on the entrant while preserving the 

pressure on the incumbent as much as possible, in order to force a new Nash equilibrium with lower combined 

profits compared to the previous equilibrium point. The problem with this idea is that while the incumbent seems 

to gain from a reordering of departures to lessen price competition, the entrant does not. The intuition for this is 

that without drastic changes, departures belonging to the entrant will continue to lie close to the competitor’s 

departures. For the incumbent, in contrast, its existing shielded pseudo-monopoly areas can easily be expanded. 



 

 

Simulations confirm that any changes large enough to have a positive impact on the behaviour of the entrant will 

increase average fares enough to make the welfare effect of the policy negative. 

Yet another idea is to vary access charges according to the number of departures that an operator runs. It 

seems however that this will not work without dramatic variations that are probably unfeasible due to practicality 

and fairness reasons.  

6. Conclusions 

Traditionally, most railway markets have been monopolies. There are different types of monopolies, for 

example public utilities, vertically integrated commercial firms, commercial firms that operate under concession 

and commercial firms that uphold a monopoly position in an unregulated environment. These various regimes 

correspond to different operator objective functions, including welfare maximisation (with some constraints, e.g. 

on cost); pure profit maximisation; and profit maximisation under an entry deterrence strategy. 

Open access competition has the potential to increase overall welfare by reducing the deadweight losses 

stemming from monopoly situations. Our simulation model demonstrates that there exists a stable equilibrium 

with two operators, where both operators make positive profits. The duopoly situation benefits travellers at the 

expense of operators, compared to profit-maximising monopoly. Total welfare increases substantially (around 

24% in our simulations), and is in fact close to unsubsidised welfare maximum. One operator tends to offer 

higher frequency and higher average fares than the other, despite the two operators being modelled as identical. 

The entry deterrence scenario also leads to higher frequency compared to pure profit-maximising monopoly, 

which leads to a small positive welfare contribution. 

The timing and ordering of departures affects social welfare. A welfare maximising infrastructure manager 

should use its regulatory power to ensure a high level of price competition by placing competing operators’ 

departures adjacent to each other, rather than letting a departure enjoy a local monopoly in time by surrounding it 

with departures by the same operator. This gives travellers options to choose from throughout the day, thus 

increasing competition. Departures should also be spread evenly, not lumped together, in order to maximise 

welfare. (Frequencies should not necessarily be constant throughout the day however, as that result rests on an 

assumption of uniform PDT distribution.) 

There are incentives for one operator to buy the other’s departure slots in order to create a monopoly 

situation. The source of this is ultimately that there is a finite number of profitable departure slots, because of 

fixed costs per departure. This result appears even without economies of scale in production. In reality, such 

economies exist and will tend to reinforce this problem. 

In all, this paper provides insights concerning the dynamics of railway markets with open access competition, 

including an estimate of the welfare gains from replacing profit-maximising monopoly with competition, as well 

as a rough estimate of potential gains from introducing such market regime, and advice to regulators to set 

timetables that increases competition, and take measures to prevent behaviour by market participants that 

diminishes competition. 
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Appendix A. Calculating consumer surplus 

Use the equation 

𝐷(𝑡) = 𝜑(𝑡) − 𝛽𝑐(𝑡) 

Solve for the generalised cost: 

𝑐(𝑡) =
𝜑(𝑡) − 𝐷(𝑡)

𝛽
 

For a given PDT t, the consumer surplus is the triangular area  
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Integrate over [𝜏𝑛 , 𝜏𝑛+1] assuming 𝜑(𝑡) is constant (as in the simulation): 
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Appendix B. Calculating demand 

As before, 

𝜏𝑛 =
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Assuming that 𝜑(𝑡) is constant, total demand becomes 
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Appendix C. Sensitivity analysis 

Robustness tests have been conducted by varying the parameters α, β and κ. Each variable has been multiplied 

by a coefficient of 0.5, and 1.5 relative to the base case. The table below presents the key results. As seen, 

predicted relative welfare differences between the welfare-maximising benchmark, profit-maximising monopoly 

and Nash equilibrium duopoly are quite stable over a range of parameter values. Changes in demand are also 

stable, while the change in service frequency (number of departures) varies more and fares vary much more, 

especially with demand/price elasticity. 

 

 Base 

case 

α 

+50% 

α 

-50% 

β 

+50% 

β 

-50% 

κ 

+50% 

κ 

-50% 

α 6,000 9,000 3,000 6,000 6,000 6,000 6,000 

β -10 -10 -10 -15 -5 -10 -10 

φ 15,000 15,000 15,000 15,000 15,000 15,000 15,000 

K 40,000 40,000 40,000 40,000 40,000 40,000 40,000 

κ 500,000 500,000 500,000 500,000 500,000 750,000 250,000 

No. of departures 

profit max./welfare max. 
-27% -17% -25% -27% -15% -27% -33% 

Nash eq./welfare max. +14% +29% +/-0% +14% +45% +14% +4% 

Average fare 

profit max./welfare max. 
+578% +514% +764% +305% +1,486% +464% +681% 

Nash eq./welfare max. +205% +207% +254% +119% +388% +154% +252% 

Demand 

profit max./welfare max. 
-47% -46% -48% -45% -49% -46% -48% 

Nash eq./welfare max. -16% -17% -16% -16% -13% -15% -17% 

Social welfare 

profit max./welfare max. 
-29% -30% -28% -32% -27% -30% -28% 

Nash eq./welfare max. -13% -13% -12% -18% -7% -15% -9% 
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